North Carolina, located on the eastern coast of the USA, with its 100 counties: North Carolina State University is located in Wake county (red). The NCDA Mountain Research Station is located in Haywood county in Western North Carolina (brown). North Carolina is divided into 4 main regions from west to east: the Mountains, the Piedmont, the Coastal Plains, Tidewater, and a small region of deep sand called the Sandhills.
View of a mountain pasture invaded by woody perennial shrubs and trees

Materials and Methods

Study 1

Four grazing seasons (1991-1994)

- **Control**
 - Area fenced to keep animals out
- **Goats alone**
 - 12.2 mature does/acre
- **Goats + cattle**
 - 7 mature does + 0.8 to 1.2 growing steers/acre (496 lb initial BW)
Background picture: control pasture (left) and pasture grazed by goats + cattle (right). All graphs have the same format: measurement of the variable of interest on the Y-axis and dates when measurements were taken on the X-axis.
The cover from herbaceous grass species increased linearly from 16 to 63% in the goat pastures and from 13 to 54% in the goats + cattle pastures with no difference between the grazed treatments. Conversely, the cover from herbaceous forage species remained low and ranged from 10 to 27% in the control plot. *F. arundinacea*, *P. pratensis* and *T. repens* accounted for the preponderant portion of herbaceous forage species in the grazed pastures.

Background picture: control pasture (left) and pasture grazed by goats + cattle (right).
Tall fescue frequency increased linearly from 11% in May-Y1 to 48% in October-Y4 in both the goat and the goats + cattle pastures and remained a minor herbaceous component in the control plots.
Bluegrass exhibited linear increases in frequency from 23% in May-Y1 to 71% in October-Y4 in the goat pastures, and from 12 to 34% in the goats + cattle pastures. Frequency patterns were similar between the grazed pastures with a tendency for a higher frequency in the goat pastures. Bluegrass remained a minor herbaceous component in the control pastures.
White clover frequency (%) through 4 grazing seasons

Study 1

White clover increased linearly over the years in the goat and the goats + cattle pastures, with no difference between the grazed pastures (Avg: 4% for May-Y1 and 53% for Oct-Y4). White clover remained a minor herbaceous component in the control pastures.

Background picture: control plot (left) and plot grazed by cattle + goats (right).
Multiflora rose height and canopy area stayed high in the control pastures, but decreased linearly in the animal pastures with no difference between the goats and the goat + cattle pastures, although there was a tendency of a greater decrease in the goat pastures due to the greater stocking density. Height of Multiflora rose was reduced from 2.1 m to .4 m in the goat pastures and from 2.1 m to .7 m in the goats + cattle pastures. By the end of the study, canopy area measured .3 and .4 m² in the goat and goat + cattle pastures, resp.
The percent of multiflora rose dead canes (stems) was close to nil in the control pastures, but increased linearly in the goat and the goats + cattle pastures, with no difference between the grazed pastures, although the percent of dead canes tended to be slightly higher in the goat pastures.
Goats browse height using bipedal stance
Pictures of the experimental site before Study 1 on the left, after 4 years of grazing/browsing on the right. Dead trees were cut and removed from the site.
Materials and Methods
Study 2
Four grazing seasons (1996-1999)

- Control
 - Area fenced to keep animals out
- Goats + cattle
 - 1.4 goats (79 lb) and 0.7 steer/a (510 lb initial BW)
- Cattle alone
 - 0.7 steer/a (510 lb initial BW)
Over the 4 grazing seasons, vegetative ground cover was similar (avg: 89.6%) in both the cattle and the goats + cattle pastures. Vegetative ground cover followed the same trend, during the first 2 grazing seasons, but decreased thereafter from 97.1% in April-Y3 to 66.3% in October-Y4.
The cover from herbaceous forage species remained the same in both the cattle and the goats + cattle pastures (avg: 81%). Conversely, cover from herbaceous forage species decreased linearly in the control pastures, from 78% in May-Y1 to 39% in October-Y4, the shift being attributed to the overstory of brush and rose bushes that shaded out herbaceous vegetation on the ground. As in Study 1, *P. arundinacea, P. pratensis* and *T. repens* accounted for the preponderant portion of herbaceous forage species in the grazed pastures.
Bluegrass frequency declined in the control compared to the cattle and the goats + cattle pastures, and was absent from the control in Sep-Y3 and Apr-Y4. Grazed pastures had a similar frequency of Bluegrass (avg: 50.1%) with the goats + cattle pastures tending to have a lower frequency. Bluegrass was strongly seasonal, being observed at a higher frequency in spring than fall.
In the cattle and the goats + cattle pastures, white clover frequency was similar (avg: 55%) and exhibited no seasonality. White clover played a minor role in the control pastures where it was observed only in spring and fall in Y1 and fall in Y4.)
Tall fescue frequency (%) through 4 grazing seasons

Study 2

Important grass species

Tall fescue was high in all pastures and did not change during the course of the study. In the control pastures, lack of sunlight at the ground level due to the natural successional reforestation process did not seem to affect tall fescue as much as was the case for bluegrass and white clover.
Goats grazing with cattle and cattle grazing alone were very effective in controlling brambles and grazed it to a similar extent. Conversely, brambles frequency increased from 6.7% in October-Y1 to 79.6% in October-Y4 in the control pastures.
Honeysuckle, a climbing vine, increased in frequency in the control pastures because it tolerates shade well and was well controlled in both the cattle and the goats + cattle pastures.
Vegetation management experiment conducted at the Mountain Research Station in Waynesville

Black locusts (*Robinia pseudoacacia*) trees were practically eliminated over the 4-year period in both C and G+C plots
Beef cattle and goats defoliating *R. pseudoacacia*
Background picture: Multiflora rose in a goats + cattle plot and goats browsing multiflora rose
After 4 grazing seasons, only 41% of multiflora rose canes (stems) were still alive in the goats + cattle pastures, compared to 95.5% in the control and cattle pastures. Therefore, the reduction in height, canopy area and number of live canes in the goats + cattle pastures indicated that their condition was severely affected.
Vegetation management experiment conducted at the Mountain Research Station in Waynesville. Pictures were taken during the fourth grazing season. Plots depicted are:
left: grazed by cattle only (7 head of beef cattle)
center: control (not grazed for 6 years)
right: grazed by cattle (7 head) and meat goats (14 head).
Parts of the control were impenetrable by the fourth grazing season.
Note the difference between the cattle only (left hand side) and the cattle + goat (right hand side) plots: shrubs, mainly multiflora rose (*Rosa multiflora*) bushes, can easily be seen on the cattle
only plot. Shrubs have disappeared on the cattle + goat plots due to repeated defoliation by goats.
2nd vegetation management experiment conducted at the Mountain Research Station in Waynesville in late October 1999 (1st snowstorm of the season).
- Cattle alone (7 head) and cattle + goats (7 cattle + 14 goats) were rotated throughout the grazing season on 3 replications consisting of 3 plots each (control - no grazing -, cattle alone and cattle + goats). Experiment lasted 4 years (4 grazing seasons).
- Picture represents one replication at the end of the 4th grazing season. Note multifloora rose bushes in cattle alone plot, and their absence in cattle + goat plot. We could not take measurements in parts of the control plots because browse was
too thick.
Southwest Virginia
reclaimed mine land

- Cattle Only Pastures
 - 3 Steers
- Mixed Grazing Pastures
 - 3 Steers + 15 goats
- Control
Study conducted over 2 years on reclaimed mine land in southwest Virginia
Goats consumed autumn olive and completely debarked the tree branches, thus killing the trees
Total animal output

![Bar chart showing total animal output for 2006 and 2007 with categories 'Cattle alone' and 'Mixed grazing'.](chart.png)
Multispecies grazing
Recommendation: possible to add 1 to 2 head of mature goat per head of beef cattle without reducing beef cattle production, but changing botanical composition of pasture (control of browse and broadleaf weeds by goats) and increasing productivity per acre (goats for sale)
Graze multiple species

- Sheep and goats share the same internal parasites, but they are different from the parasites that affect cattle and horses.
 - Except maybe the barber pole worm in young calves.

- Producers who graze multiple species of livestock report fewer parasite problems.

- Cattle and horses “vacuum” sheep/goat pastures of infective worm larvae.

- There are other benefits to mixed species grazing, such as complimentary grazing habits.
Poisonous Plants

Degree of poisoning or resiliency depends on:

- How much eaten
- Which plant part
 - Fresh or wilted
- When? spring, summer fall, winter
- Stage of maturity of plant
- Animal class
 - Young growing or adult animal

Complex problem
Black Cherry, wild cherry

Wilted leaves, twigs, seeds

Prussic acid poisoning

HIGHLY TOXIC, MAY BE FATAL IF EATEN

CAUTION
Leaves and small branches can be blown into the field where your animals are grazing during a storm.
Black Cherry (*Prunus serotina*)

- Symptoms: staggering or convulsions within 15 to 30 minutes; death within 1 hour
- Control: cut down and remove tree, treat stump to prevent resprouts
Same family as black cherry
Johnsongrass, sorghums

Prussic acid poisoning

Do not allow animals to graze until at least 15” tall
Avoid grazing during or shortly after a drought, when
plants are wilted, or for at least 2 to 4 days after a
killing frost
Azalea, Rhododendron

All parts

Andromedotoxin

HIGHLY TOXIC, MAY BE FATAL IF EATEN
Mountain Laurel

All parts

Andromedotoxin, arbutin

HIGHLY TOXIC, MAY BE FATAL IF EATEN
Jimsonweed, thorn apple, stinkweed, datura

- All parts, mainly seeds and leaves
- Tropane alkaloids
- Toxic only if large quantities eaten
Poison hemlock

Dangerous but rarely eaten
Parts of plant: leaves and unripe fruits

Poisonous Principle: alkaloids, also contains coniine and coniceine which are teratogenic
Animals Poisoned: horses, cattle, swine, poultry, goats, sheep
We have nightshade in some of our pastures. Goats simply avoided these plants. Problem may arise if animals are starved: in that case they may eat everything in sight.
Grazing pigweed during normal or wet weather

No problem

Grazing pigweed following drought

Toxic levels of nitrate may sometimes occur
Although natural browsers, goats are opportunistic feeders, they like to consume a large variety of feeds, and also do well in a grazing situation if the manager adapts grazing management to meet goat grazing/browsing behavior.
Usually, horse pastures are very short because of mismanagement. Horses do well in taller pastures when control-grazed to avoid overgrazing.
Profitable meat goat production is pasture/browse based. Cost per kg dry matter is lowest for grazed pastures. Additional losses (loss of leaves in the field and due to fermentation) and labor, machinery, fuel, etc. increase the cost of stored forages. Concentrate and by-products vary widely: using byproducts when price is low is a good strategy. May need to have it tested for energy, protein, calcium and phosphorous before buying.
In North Carolina, the climate is temperate in spring, fall and winter, and sub-tropical during the summer. Cool-season forages have a bi-modal pattern of growth (blue growth curve), and forage systems need to include warm-season forages (brown growth curve) for the summer months.
Graph depicting the quality of vegetative and mature pasture in relation to the nutritional requirements of goats of different classes. As goats of different classes have different nutritional requirements, they should not be grazed together, but grouped according to nutritional requirements, so as to match the forage resources of the farm to nutritional requirements of the animals, and thus reducing feeding costs.
The same applies for total digestible nutrients, a measure of energy
<table>
<thead>
<tr>
<th>Browse type</th>
<th>Crude protein</th>
<th>Neutral detergent fiber</th>
<th>Calcium</th>
<th>Phosphorus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiflora rose</td>
<td>18.8</td>
<td>34.5</td>
<td>0.99</td>
<td>0.32</td>
</tr>
<tr>
<td>Black locust</td>
<td>23.0</td>
<td>44</td>
<td>1.26</td>
<td>0.21</td>
</tr>
<tr>
<td>Honeysuckle</td>
<td>12.8</td>
<td>34.5</td>
<td>1.21</td>
<td>0.30</td>
</tr>
<tr>
<td>Brambles</td>
<td>15.9</td>
<td>24.5</td>
<td>0.23</td>
<td>0.84</td>
</tr>
<tr>
<td>Privet</td>
<td>18.0</td>
<td>26.8</td>
<td>0.89</td>
<td>0.34</td>
</tr>
<tr>
<td>Green briar</td>
<td>17.0</td>
<td>39.5</td>
<td>0.60</td>
<td>0.18</td>
</tr>
<tr>
<td>Kudzu leaves</td>
<td>23.7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trumpet creeper</td>
<td>16.7</td>
<td>43.1</td>
<td>0.42</td>
<td>0.22</td>
</tr>
</tbody>
</table>
A Strategy for Pasture Use

- Group animals into categories according to nutritional needs

 - Goats with highest nutritional needs: does in early lactation, yearlings and weanlings, should have access to the best pastures

 - Dry does, bucks, pregnant does not nursing can meet nutrient requirements on mature pasture

Self explanatory
Stockpiling means deferred grazing, that is letting the forage grow in the fall and graze at a later date during late fall-early winter. The quality of the forage will be lower (depending on their nutritional requirements some animal classes will have to be supplemented with purchased feed) but nonetheless this strategy allows the producer to lengthen the grazing season and reduces the amount of hay to buy.

- Consider supplementing with a small grain pasture
 - cereal rye, annual ryegrass
- Stockpiled fescue
- Use of brassicas
 - Turnips, kale, mustard
 - Only ½ of daily ration
- Use controlled grazing principles
 - Restrict animals in small area (1-2 days grazing max.)
When feeding hay, several things are important. First, to know what kind of supplementation if any, is needed, hay needs to be tested. There is a NC Department of Agriculture & Consumer Services (NCDA & CS) forage testing lab in Raleigh: work with your extension agent if you need your hay to be tested. It would be preferable to know the quality of the hay before purchasing it. Some producers who make hay for sale routinely have it tested before selling it. Guessing can result in over or under feeding of a supplement. Either way reduces profitability. Second, goats should be grouped by nutritional needs. The best hay should go to kids, lactating does, or does in late pregnancy.

These hay and feed recommendations are from Drs. Frank and Bruce Pinkerton in an article entitled “Supplemental Winter Feeding of Goats”
Mineral blocks, such are in the upper left picture, are too hard for goats. In addition, minerals are costly, and should not be exposed to the elements. At NCSU, we feed loose minerals at the rate of 1 oz/mature doe/day.
The mineral feeder on the right-hand side was bought commercially from Vigortone. The livestock agent from Graham county in NC told me that he bought one twenty years ago, that the plastic is UV resistant and that it is still in excellent shape. On the bottom left picture, I would put a flap on the opening of the PVC pipe to protect the minerals from rain.
Minerals from goats should contain copper, around 1000 ppm (mg/kg). Some companies sell minerals with approximately 1700 ppm copper, which is ok. If you raise sheep, the sheep minerals should not contain copper or only trace amounts, as copper can be toxic to sheep.
In addition, we are (NC, VA) in a zone deficient in selenium (Se), all minerals should contain selenium. Selenium is tightly regulated so most minerals contain the same amount.
If you have any doubt, call the livestock agent in your county.
It is also a good idea to keep the tags that come with the bags as they contain the minerals and their amounts.
And finally, don’t forget about…

WATER! All production, growth and animal performance will be affected if insufficient or poor quality water is available.

Body condition: The best way to monitor your nutritional program is to watch your goats and what is happening with their body condition.

Body Condition - Web Resources

Body Condition Scoring – Langston University video

http://www.luresext.edu/goats/research/bcshowto.html

interactive

http://www.luresext.edu/goats/research/bcs.html
The FAMACHA card was developed for sheep in South Africa and validated for goats and camelids in the USA. It goes from 1 (very healthy) to 5 (very anemic). It only works for the barber pole worm, a nematode sucking blood, that leads to anemia. Using this card, one can quickly assess the degree of anemia of any goat or sheep without having to analyze a fecal sample. The barber pole nematode is the predominant worm found in small ruminants during the growing season.

The American Consortium for Small Ruminant Parasite Control has an excellent website with a lot of pertinent information
www.acsrpc.org
Do not forget to click on ‘Timely Topic’ under ‘Parasite Control’.
There are 3 families of dewormers, denoted by the different colors. Always read the label for restriction of its use before using any kind of dewormer. For instance, Valbazen should not be used in the 3 months of pregnancy (pregnancy last 150 days on the average for both sheep and goats).
Recommend holding animal in confinement on arrival. After the animal acclimates to the new conditions and has recovered from the transport, feed should be withheld for 24 hr (but give free-choice water) and a fecal sample collected for a fecal egg count. Animal should then be treated with a full dose of each of the 3 drugs. The drugs should not be mixed together, but can be given one right after the other. After 2 weeks another fecal egg count (FEC) should be done to confirm that no eggs are being shed. If eggs are shed after this triple treatment, then the animal is infected with super-resistant worms. In such a case the animal must remain in confinement until the fecal egg count comes down to 0 – this could take 6 months. If treatment appears to be effective and FEC is 0, then the animal can be placed onto pasture – but always put them out onto a worm-contaminated pasture – NEVER onto a new/clean pasture. This is because a 0 FEC does not mean there are no worms – only that there are too few to detect. If put out onto a clean pasture, the very few eggs shed (from super-resistant worms) will not be diluted and so over time will become the dominant parasite population.

Dosages of dewormers for both sheep and goats are found on two separate excel files saved in pdf format.

You may want to keep you newly-purchased animals in quarantine for a longer period of time so that you could make sure they are healthy. Problems to look for are hoof rot, sore mouth, pink eye, and CL (Caseous lymphadenitis). CL bacteria lodge in the lymph nodes and create infections that look like a lump. If those lumps burst open, the released pus could contaminate your entire farm. In the case of CL, it is necessary
to cull those animals immediately. In addition, humans should protect their hands from the pus as the organisms could cause skin infection. Wash hands well after handling infected animals and dispose of gloves and anything that contains pus.
The Ends!!!